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INTRODUCTION

HETEROTROPHIC microbial eukaryotes that eat bac-
teria, phytoplankton, or other protozoans are important 
links in marine and freshwater food webs (e.g. Azam 
et al., 1983; Boenigk & Arndt, 2002; Fenchel, 1987; Jürgens 
& Matz, 2002; Lagenheder & Jurgens, 2001; Laybourn- 
Parry & Parry,  2000; Montagnes et al.,  2008; Ohtsuka 
et al.,  2015; Schekenbach et al.,  2010; Tillman,  2004; 
Weisse et al.,  2016; Worden et al.,  2015). Many of the 
predators on microbial eukaryotes are size- selective 
feeders (e.g. Fenchel, 1980; Montagnes et al., 2008; Strom 
& Loukos, 1998; Verity, 1991; Weisse et al., 2016). One of 

the ways in which microbial eukaryotes can change their 
size is by forming multicellular colonies, but the effects 
of being multicellular versus unicellular on vulnerability 
to predation by other microbial eukaryotes is not yet well 
understood. Choanoflagellate species that have unicel-
lular life stages and that can also form multicellular col-
onies via cell division (e.g. King, 2004; Leadbeater, 2015) 
(Figure 1) provide useful research systems for studying 
the effects of multicellularity on predator avoidance.

Understanding mechanisms that affect the suscepti-
bility of unicellular versus multicellular choanoflagel-
lates to being captured by diverse protozoan predators 
can also provide insights into the evolutionary origins 

O R I G I N A L  A R T I C L E

Formation of multicellular colonies by choanoflagellates increases 
susceptibility to capture by amoeboid predators

Nicole E. Chin1 |    Tiffany C. Wu1 |    J. Michael O'Toole1 |    Kevin Xu1,2 |    Tom Hata1 |   

Mimi A. R. Koehl1

Received: 3 July 2022 | Revised: 10 November 2022 | Accepted: 13 December 2022

DOI: 10.1111/jeu.12961  

Nicole E. Chin and Tiffany C. Wu contributed equally to this paper and are both first authors. They are listed in alphabetical order.  

1Department of Integrative Biology, 
University of California, Berkeley, 
Berkeley, California, USA
2Department of Biomedical Engineering, 
Washington University in St. Louis, St. 
Louis, Missouri, USA

Correspondence
Mimi A. R. Koehl, Department of 
Integrative Biology, 3040 VLSB, University 
of California, Berkeley, CA 94720- 3140, 
USA.
Email: cnidaria@berkeley.edu

Funding information
National Science Foundation, USA, Grant/
Award Number: DMS- 2054143 and IOS- 
1655318

Abstract
Many heterotrophic microbial eukaryotes are size- selective feeders. Some 
microorganisms increase their size by forming multicellular colonies. We used 
choanoflagellates, Salpingoeca helianthica, which can be unicellular or form 
multicellular colonies, to study the effects of multicellularity on vulnerability to 
predation by the raptorial protozoan predator, Amoeba proteus, which captures 
prey with pseudopodia. Videomicrography used to measure the behavior of 
interacting S. helianthica and A. proteus revealed that large choanoflagellate 
colonies were more susceptible to capture than were small colonies or single 
cells. Swimming colonies produced larger flow fields than did swimming 
unicellular choanoflagellates, and the distance of S. helianthica from A. proteus 
when pseudopod formation started was greater for colonies than for single cells. 
Prey size did not affect the number of pseudopodia formed and the time between 
their formation, pulsatile kinematics and speed of extension by pseudopodia, 
or percent of prey lost by the predator. S. helianthica did not change swimming 
speed or execute escape maneuvers in response to being pursued by pseudopodia, 
so size- selective feeding by A. proteus was due to predator behavior rather than 
prey escape. Our results do not support the theory that the selective advantage 
of becoming multicellular by choanoflagellate- like ancestors of animals was 
reduced susceptibility to protozoan predation.
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Amoeba proteus, choanoflagellate, feeding behavior, hydrodynamic signal, multicellularity, 
phagocytosis, predation, protozoa, pseudopodia, Salpingoeca helianthica
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of animals. Multicellular animals evolved about 600 
million years ago (Armstrong & Brasier, 2005; Knoll & 
Lipps, 1993; Schopf & Klein, 1992). Molecular phyloge-
netic and genomic analyses indicate that animals and 
choanoflagellate protozoans shared a common ances-
tor (Carr et al.,  2017; King et al.,  2008; López- Escardó 
et al.,  2019; Richter et al.,  2017). It is thought that the 
ability to form multicellular colonies was present in the 
last common ancestor of animals and choanoflagellates 
because colony formation is found in a number of dif-
ferent choanoflagellate lineages (e.g. Carr et al.,  2017). 
Thus, by studying the performance of colonial versus 
unicellular choanoflagellates at swimming, feeding, 
and avoiding capture by predators, we can make in-
formed inferences about selective pressures that might 
have affected the evolution of multicellularity in the 
ancestors of animals and choanoflagellates (reviewed 

in Koehl,  2020). Before animals evolved, the predators 
on the ancestors of animals and choanoflagellates were 
most likely heterotrophic eukaryotes, so it has been sug-
gested that multicellular colonies might have been too 
big for those microbial predators to capture and consume 
(Boraas et al., 1998; Fenchel, 2019; Richter & King, 2013; 
Stanley, 1973).

Evidence from molecular phylogenetic analyses, fos-
sils, and chemical biomarkers shows that heterotrophic 
forms of eukaryotes such as ciliates, flagellates, and vari-
ous amoeboid protozoans evolved before multicellular an-
imals (e.g. Armstrong & Brasier, 2005; Parfery et al., 2011; 
Schopf & Klein, 1992). Therefore, studying how living ex-
amples of these groups interact with unicellular and mul-
ticellular choanoflagellates can help us evaluate the idea 
that a selective advantage of forming colonies by animal 
ancestors was an escape in size from predation.

F I G U R E  1  Salpingoeca helianthica prey and Amoeba proteus predators. (A) Diagram of an S. helianthica cell showing the ovoid cell body 
and the single flagellum surrounded by a collar of microvilli. (B) Frame of a video of an A. proteus extending two pseudopodia (P) around 
an S. helianthica colony. A food vacuole in the A. proteus contains a captured colony of S. helianthica. A unicellular S. helianthica (single 
cell) is ignored by the A. proteus. (C) Frame of a video of a different A. proteus that has completely encircled a colony of S. helianthica by two 
pseudopodia that are fusing to create a food vacuole.
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SUSCEPTIBILITY TO CAPTURE BY AMOEBOID PREDATORS

Feeding modes and size- selective feeding by 
heterotrophic microbial eukaryotes

Although diverse sessile, crawling, and swimming pro-
tozoans use a variety of mechanisms to capture prey (re-
viewed by Arndt et al., 2000; Fenchel, 1986, 1987; Jürgens 
& Massana, 2008; Montagnes et al., 2008; Sleigh, 1991), 
their feeding modes have been categorized into func-
tional types (Montagnes et al., 2008; Sleigh, 2000): (1) a 
“suspension feeder” or “filter feeder” produces a water 
current that carries prey into a capture area, (2) a “pas-
sive predator” or “diffusion feeder” traps swimming or 
drifting prey that bump into it, and (3) a “motile raptor” 
or “raptorial interception feeder” uses structures such as 
pseudopodia or tentacles to actively capture prey. The 
effects of increasing size via colony formation on the sus-
ceptibility of choanoflagellates to being eaten might dif-
fer depending on predator feeding mode.

It has long been known that different types of het-
erotrophic microbial eukaryotes are size- selective feed-
ers (e.g. Fenchel, 1980, 1987; Hansen, 1992; Montagnes 
et al.,  2008; Verity,  1991). For example, diverse types 
of protozoans are unable to consume large prey (e.g. 
suspension feeders: Fenchel,  1986; Jonsson,  1986) or 
preferentially feed on smaller prey (e.g. dinoflagel-
lates: Jakobsen & Tang,  2002; nanoflagellates: Callieri 
et al., 2002). In contrast, diverse bacteria- eating proto-
zoans preferentially feed on large cells (ciliates: Epstein 
& Shiaris,  1992; Gonzalez et al.,  1993; Jonsson,  1986; 
Sanders, 1988; flagellates: Chrzanowski & Šimek, 1990; 
Epstein & Shiaris,  1992; and nanoflagellates: Boenigk 
& Arndt, 2000; Šimek & Chrzanowski, 1992). However, 
some protozoans eat small and large cells at lower rates 
than mid- sized prey (reviewed by Jürgens & Güde, 
1994; ciliates: Jakobsen & Hansen,  1997; flagellates: 
Jakobsen & Tang, 2002; Pfandl et al., 2004; dinoflagel-
lates: Jakobsen & Hansen,  1997; and nanoflagellates: 
Güde, 1979). Herbivorous amoeba preferentially engulf 
larger diatoms (Van Wichelen et al., 2006), whereas a va-
riety of amoebae feeding on benthic bacteria consume 
smaller cells at higher rates than large ones (Dillon & 
Parry, 2009). The mechanisms underlying size- selective 
feeding can be an active choice by predators, the inabil-
ity of predators to engulf large prey, or the higher rates 
of encountering predators by large motile prey than by 
small prey (e.g. Fenchel, 1982, 1987; Kumler et al., 2020; 
Rubenstein & Koehl,  1977; Shimeta & Jumars,  1991; 
Verity,  1991). Some protozoans use different feeding 
mechanisms to capture large prey than they employ 
for smaller prey (Berge et al., 2008; Jeong et al., 2005). 
Heterotrophic microbial eukaryotes also distinguish 
among prey using chemical signals (e.g. Montagnes 
et al., 2008; Stoecker, 1988; Verity, 1991). These studies 
suggest that an increase in prey size via colony formation 
might only reduce the danger of capture by some types of 
microbial predators.

Features of prey that affect susceptibility to 
predation by microbial eukaryotes

Microorganisms use a variety of mechanisms that can 
reduce their susceptibility to predation, including chemi-
cal defenses and changes in cell surface properties, in-
crease in size, and motile escape maneuvers (reviewed in 
Lancaster et al., 2019; Montagnes et al., 2008).

Various prey of heterotrophic microbial eukaryotes 
respond to predators by increasing their size. Some 
ciliates do so by increasing cell size (Kusch,  1993b; 
Wicklow, 1988) or by producing wings, spines, and protu-
berances (Kuhlmann & Heckmann, 1994; Kusch, 1993a; 
Kusch & Heckmann, 1992; Wicklow, 1988) in response 
to predatory ciliates and amoebae. Other microorgan-
isms increase their size in response to predators by 
becoming multicellular via colony formation or aggre-
gation. For example, some unicellular algae form mul-
ticellular filamentous colonies or increase colony size in 
response to predation by flagellates (Boraas et al., 1998; 
Jakobsen & Tang,  2002; Kapsetaki & West,  2019). 
Similarly, in response to heterotrophic microbial eu-
karyotes, some bacteria and cyanobacteria form colo-
nies or aggregate into multicellular clusters, filaments, 
or biofilms that are resistant to predation (Corno & 
Jürgens, 2006; Deleo & Baveye, 1997; Güde, 1979; Hahn 
et al.,  1999; Jürgens et al.,  1994; Lancaster et al.,  2019; 
Matz & Kjelleberg,  2005; Pajdak- Stós et al.,  2001; 
Pernthaler et al.,  1997; Posch et al.,  2001; Sommaruga 
& Psenner,  1995). Although the formation of spherical 
rosette colonies (Figure  1) by choanoflagellates does 
not affect their capture by passive heliozoan predators 
(Kumler et al.,  2020), the consequences of forming ro-
sette colonies to capture by protozoans using other feed-
ing modes are not known.

The motility of prey can affect their susceptibility to 
predation. Mathematical models indicate that plank-
tonic prey have more frequent encounters with preda-
tors as prey swimming speed increases (e.g. Andersen 
& Dölger, 2019; Crawford, 1992; Visser, 2007), and some 
experiments show that motile or faster microorganisms 
are captured at higher rates (bacteria captured by flag-
ellates: Gonzalez et al., 1993; dinoflagellates and ciliates 
captured by zooplankton: Jakobsen et al.,  2005) than 
are nonmotile or slowly- swimming microorganisms. 
In contrast, faster swimming by bacteria reduces the 
rates at which nanoflagellate (Matz & Jürgens,  2005) 
and ameboid (Lancaster et al., 2019) predators capture 
them. Some motile protozoans show escape behaviors. 
For example, ciliate and flagellate prey may initiate eva-
sive behaviors when they detect fluid motions produced 
by predators (Jakobsen, 2001, 2002). Furthermore, some 
ciliates are induced by a chemical signal to move away 
from ameboid predators (Kusch, 1993b). Modeling also 
predicts that the risk of predation is greater for prey 
that swim along straight paths than for prey that have 
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meandering or spiral trajectories (Visser, 2007). Rosette 
colonies of the choanoflagellate, Salpingoeca rosetta, 
swim more slowly and along more circuitous paths than 
do unicellular S. rosetta (Koehl, 2020), but the effects of 
such differences in swimming on susceptibility to pre-
dation are not known. Furthermore, whether unicellular 
or multicellular choanoflagellates have escape behaviors 
elicited by predators has not been documented.

If microbial eukaryote predators can sense nearby 
prey via hydrodynamic signals produced by the prey, a 
mechanism by which prey can be cryptic is to minimize 
the disturbance of the water around them as they swim. 
Microbial eukaryotes are so small that inertial forces 
can be ignored and the viscous resistance of water to 
being sheared determines the flow around them and the 
hydrodynamic forces they experience (e.g. reviewed by 
Koehl, 2020; Vogel, 1994). In such viscous flow regimes, 
the water is sheared (e.g. one layer of water moves faster 
than the layer next to it) by moving bodies, and the layer 
of sheared water around a microscopic swimmer is large 
relative to the size of the organism (e.g. Vogel,  1994). 
Raptorial ciliates detect hydrodynamic shear produced 
by motile prey (Jakobsen et al., 2006). Further evidence 
that microbial eukaryotes respond to hydrodynamic dis-
turbances is that some flagellates and ciliates are stimu-
lated to execute escape maneuvers by predator- feeding 
currents or by siphon flow that mimics the water shear 
in predator- produced currents (Jakobsen,  2001, 2002; 
Jakobsen et al.,  2006). Rosette colonies of the choano-
flagellate, S. rosetta, create flow fields that are much 
larger than those produced by unicellular S. rosetta 
(Koehl, 2020), suggesting that raptorial predators might 
be more likely to detect colonies than single cells, and 
might be able to sense multicellular colonies at greater 
distances than single cells.

Research system

We studied the effects of rosette colony formation by 
choanoflagellates on their susceptibility to capture by 
raptorial protozoan predators using Salpingoeca helian-
thica as the prey and Amoeba proteus as the predators.

Salpingoeca helianthica

Choanoflagellates in the genus Salpingoeca are used as 
model organisms to study the evolution of multicellular-
ity in the ancestors of animals because they have unicel-
lular life stages and can also form multicellular colonies 
by cell division (e.g. Brunet & King,  2017; King,  2004; 
King et al.,  2008; Kirkegaard & Goldstein,  2016; 
Koehl, 2020; Kumler et al., 2020; Richter & King, 2013; 
Roper et al.,  2013). S. helianthica is a freshwater cho-
anoflagellate that has a number of life stages, includ-
ing benthic thecate cells, unicellular swimmers, and 

multicellular swimming rosette colonies (Figure 1; Carr 
et al., 2017; Richter et al., 2017). Choanoflagellates such 
as S. helianthica, which eat bacteria and are the prey to 
other protists, can be important links in freshwater food 
webs (Leadbeater, 2015).

Amoeba proteus

The raptorial predator, A. proteus, was chosen for this 
study because it is ecologically important (reviewed in 
Anderson,  2018; Rodríguez- Zaragoza,  1994), is easily 
maintained in culture, and readily eats both multicellu-
lar and unicellular swimming S. helianthica. A. proteus 
are found worldwide on surfaces (e.g. sediment, vegeta-
tion, and particulate f loc) in freshwater environments 
(e.g. puddles, ponds, lakes, and streams), and in wet 
soil and moist detritus (e.g. Anderson,  2018; Nishibe 
et al.,  2004; Rodríguez- Zaragoza,  1994; Rogerson 
et al.,  2003; Waite et al.,  2000). A. proteus range in 
size from ~250 to 600 μm (Levy, 1924; Rogerson, 1980; 
Schaeffer, 1916a) and prey on a wide variety of smaller 
organisms that move slowly enough to be captured, 
such as bacteria, desmids, diatoms, f lagellates, cili-
ates, rotifers, and other amoebae (e.g. Anderson, 2018; 
Dillon & Parry,  2009; Gibbs & Dellinger,  1908; Jeon 
& Bell,  1962; Kepner & Taliaferro,  1913; Lancaster 
et al.,  2019; Mast & Hahnert,  1935; Van Wichelen 
et al., 2006). Amoebae play a vital role in the dynamics 
of nutrient cycling and energy flow in microbial com-
munities and thus are essential components of both ter-
restrial and aquatic ecosystems (e.g. Anderson,  2018; 
Shi et al., 2021).

It has long been known that amoebae crawl and 
capture prey using pseudopodia, which are temporary 
arm- like extensions of the cell (e.g. Cameron et al., 2007; 
Dellinger,  1906; Gibbs & Dellinger,  1908; Kepner & 
Taliaferro,  1913; Mast,  1926; Schaeffer,  1916b, 1917). 
The cellular mechanisms and biophysics of pseudo-
pod extension and amoeboid crawling have received 
much attention (e.g. reviewed in Álvarez- González 
et al.,  2014; Barry & Corson,  2005; Lämmermann & 
Sixt,  2009; Swanson & Baer,  1995), as have the loco-
motory and food- searching strategies of amoebae (e.g. 
Miyoshi et al., 2001; Van Haastert & Bosgraaf, 2009). 
A. proteus capture prey by phagocytosis, encircling 
prey with one or more pseudopodia and digesting them 
in food vacuoles (e.g. described in Jeon & Bell,  1962; 
Jeon & Jeon, 1976; Kepner & Taliaferro, 1913; Kepner 
& Whitlock,  1921; Lancaster et al.,  2019; Prusch & 
Britton, 1987; Salt, 1968; Sobczak et al., 2008; Swanson 
& Baer,  1995). Both mechanical and chemical stim-
uli produced by prey can induce A. proteus to extend 
pseudopodia (e.g. Kepner & Taliaferro, 1913; Weisman 
& Korn,  1967), and amoeboid protozoans have been 
shown to respond to hydrodynamic shear (Décavé 
et al., 2003). A. proteus can capture more than one prey 
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at a time (Kepner & Whitlock,  1921; Salt,  1961), but 
they do not phagocytose all the prey that they encoun-
ter (Kepner & Taliaferro, 1913). How the behavior and 
kinematics of A. proteus pseudopodia might change 
in response to prey of different sizes has not yet been 
quantified.

Objectives of this study

The goal of this study was to determine the organismal- 
level mechanisms responsible for the susceptibility of 
unicellular versus multicellular choanoflagellates, S. he-
lianthica, to capture by the raptorial predator A. proteus. 
We measured swimming by the choanoflagellate prey 
and behavior of the pseudopodia of the predators, and 
used these data to address specific questions:

1. Does the susceptibility of S. helianthica to capture 
by A. proteus depend on prey size (i.e. number of 
cells)?

2. Do the responses and kinematics of pseudopodia of A. 
proteus vary with prey size?

3. Do S. helianthica colonies or single cells change their 
behavior in response to the pseudopodia of A. proteus?

M ATERI A LS A N D M ETHODS

Culture of protozoans

Salpingoeca helianthica cultures (from the American 
Type Culture Collection, Manassas, VA) were frozen at 
−70°C for 1 week and then kept on liquid nitrogen until 
needed. Frozen cultures of S. helianthica were revived 
and cultured at 22°C using the protocols described in 
detail by King et al.  (2009; available at http://live- king- 
lab.panth eon.berke ley.edu/wp- conte nt/uploa ds/2018/08/
King- Lab- Choan oflag ellat e- Proto col- Handb ook- April 
- 2015.pdf).

Each culture was passaged every 3– 4 days by pipet-
ting 1 ml culture into a measured volume of fresh me-
dium (25% cereal germ; King et al., 2009). Cultures were 
a mix of unicellular and multicellular choanoflagellates, 
and the proportion of single cells in culture was higher 
if the volume of culture was low relative to the volume of 
medium when cultures were passaged. To have cultures 
of colonies and cultures of single cells to study, we used 
a range of ratios of culture volume to medium volume 
when we passaged the cultures (culture:medium ratios of 
1:9, 1:2, and 1:50). Furthermore, the proportion of col-
onies in a culture decreased as the number of passages 
increased. Cultures were still rich in colonies after 75 
passages, so we did >180 passages to get cultures with 
high proportions of single cells. Aliquots of cultures 
were used in our experiments during the first 2 weeks fol-
lowing passaging.

Cultures of A. proteus (from Carolina Biological 
Supply Company) were kept in their original culture 
jars at room temperature (20°C). All cultures were used 
within 4 weeks of delivery. The original containers in-
cluded wheat media that provided sustenance to the A. 
proteus, so no passaging of these organisms was neces-
sary. Exposure to light was minimized by keeping the 
cultures in an opaque box.

Videomicrography

Video recordings were made of A. proteus predators in-
teracting with S. helianthica prey in the flat- bottomed 
well (0.7 mm depth; 15 mm diameter) of a depression 
slide at room temperature (20°C). For each experiment, 
one A. proteus was pipetted into the well, after which 
enough choanoflagellate culture was added to fill the 
well, which was then covered by a coverslip (total volume 
in well = 0.124 ml). After 30 min, the protozoans were ob-
served using a Leica DMLS microscope with fiber- optic 
lighting so that illumination did not affect stage temper-
ature. Videos were taken at a magnification of 40×, and 
the depth of field was 1.84 μm. To minimize wall effects 
on the swimming of the choanoflagellates, we used a mi-
croscope objective lens that had a long working distance 
so that the plane of a video was >120 μm below the cov-
erslip. Videos were made at various framing rates (40, 
50, or 100 frames s−1) using a Fastek Hi- Spec 1 camera 
system.

Video analysis of choanoflagellate swimming

Video records of choanoflagellate motions near A. pro-
teus were analyzed with in- house software written to 
use Python (version 3.5) bindings to the OpenCV (ver-
sion 3.4) Computer Vision Library (https://opencv.org/; 
Bradski & Kaehler, 2008). Choanoflagellates in a video 
were identified as either unicellular or colonial, and their 
positions in successive frames of the video were deter-
mined using the blob- tracking function for all individu-
als above a threshold pixel brightness. Tracking of an 
individual was terminated when it was no longer dis-
cernable by the algorithm, either due to swimming out of 
the field or out of the focal plane.

Central differences were used to calculate instanta-
neous swimming speeds from the positions of a choano-
flagellate in successive frames of the video. Then, for 
each choanoflagellate, the mean of its instantaneous ve-
locities was calculated. For all trajectories lasting ≥50 s, 
a straightness index for the entire trajectory was also de-
termined, where the straightness index is the ratio of the 
distance between the position of the choanoflagellate at 
the start of the trajectory and the end of the trajectory, 
to the length of the path that the choanoflagellate fol-
lowed during its trajectory (Hadfield & Koehl,  2004). 
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Straightness indices close to one denote nearly linear 
swim paths, while lower indices indicate paths charac-
terized by turns or circling.

The capture zone (CZ) for each A. proteus predator 
was defined as 100 μm from the edge of the cell (the dis-
tance at which A. proteus can sense food, Schaeffer, 1917). 
To determine if a choanoflagellate came within the CZ, 
the distance between the closest edge of the choano-
flagellate and the closest edge of the A. proteus was 
measured using a straight line. For each individual A. 
proteus, we calculated the mean of the velocities of (1) all 
the unicellular choanoflagellates outside the CZ, (2) all 
the choanoflagellate colonies outside the CZ, (3) all the 
unicellular choanoflagellates within the CZ, and (4) all 
the choanoflagellate colonies within the CZ. Then the 
grand means of each of those mean velocities were cal-
culated for all the A. proteus that we videoed. Similarly, 
for each individual A. proteus, the median of the straight-
ness indices was calculated for all the unicellular cho-
anoflagellates and for all the colonies outside the CZ, 
and for all the unicellular choanoflagellates and for all 
the colonies within the CZ, and then the median of each 
of those median straightness indices was calculated for 
all the A. proteus.

Video analysis of flow fields produced by 
choanoflagellates

Some videos of S. helianthica swimming outside the CZ 
of predators were made with marker particles in the 
water so that the hydrodynamic disturbances produced 
by the choanoflagellates could be visualized. ImageJ 
(version 1.53f51) software with MTrackJ plugin (version 
1.5.1; Meijering et al.,  2012) was used to determine the 
position of the centroid of each choanoflagellate at 0.2 s 
intervals, and to calculate the instantaneous velocities 
(to the nearest 0.1 μm/s) of particles in the surrounding 
water.

Video analysis of speeds of pseudopodia

The extension speeds of the pseudopodia of the A. pro-
teus were analyzed using the OpenCV Computer Vision 
Library (version 3.4) described above. The edges of an 
A. proteus were highlighted using a combination of 
Laplacian filtering and thresholding of pixel brightness. 
The pseudopodia that formed in response to choano-
flagellate prey were identified. The path of each pseu-
dopodium was traced manually, and that path was used 
to identify and mask a small region on the pseudopod 
leading edge that was followed frame- by- frame using the 
blob- tracking algorithm described above. Central dif-
ferences were used to calculate instantaneous pseudo-
podium speeds from the position on successive frames 

of the tracked spot on the leading edge. Instantaneous 
pseudopodium velocity data was passed through either 
a 2 or a 0.5 Hz lowpass filter prior to further analysis.

Video analysis of predator– prey interactions

Each video was saved into digital .avi format and im-
ported into ImageJ version 1.52 software for frame- by- 
frame analysis. All measurements of distance and size 
were made to the nearest 1 μm. A response by an A. pro-
teus to a choanoflagellate was defined as the formation 
of a pseudopodium. To determine how close prey had 
to come to the predator to elicit a response, we meas-
ured the distance between the closest edge of the A. 
proteus to the prey (Kepner & Taliaferro, 1913) and the 
closest edge of the choanoflagellate in the frame when 
the first pseudopod began to form in response to that 
choanoflagellate.

Only choanoflagellates that were in focus and whose 
fates (captured, not captured, and ignored) were clear 
by the end of the video were analyzed. A choanoflagel-
late was considered “captured” if the A. proteus com-
pleted the formation of a food vacuole around the prey 
(i.e. the pseudopodia completely encircled the prey and 
fused with each other or the cell body of the A. proteus). 
A choanoflagellate was considered “not captured” if the 
A. proteus responded to the choanoflagellate, but the 
prey moved away from the predator and ended up out-
side of the volume of water encircled by the pseudopo-
dia. A choanoflagellate was considered to be “ignored” 
if it entered the CZ but elicited no response from the 
A. proteus. In these cases, the shortest distance between 
the ignored prey and the surface of the A. proteus was 
measured.

For every choanoflagellate that entered the CZ 
(100 μm from the edge of the A. proteus) and whose fate 
was clear, we used ImageJ to measure the diameter of the 
choanoflagellate, and we recorded the number of cells in 
the choanoflagellate and its fate. S. helianthica colonies 
rotate as they swim, so cells in colonies were counted in 
a video frame when most of the cells were clearly visible. 
If some of the cells were unclear within one frame, the 
colony was followed for ~16 frames to assure that all the 
cells in the colony were counted. During analysis, we cat-
egorized the choanoflagellate into three size categories: 
single cells, small colonies (2– 5 cells), and large colonies 
(≥6 cells).

A. proteus responded to choanoflagellate prey by 
forming one or more pseudopodia. We recorded the 
frame at which each pseudopodium was initiated to 
calculate the timing of pseudopod formation. In some 
cases, a pseudopodium is split into two pseudopodia (i.e. 
the new pseudopodium formed along the surface of an 
already formed pseudopodium). We recorded the frame 
number when such a split was initiated.
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SUSCEPTIBILITY TO CAPTURE BY AMOEBOID PREDATORS

Statistical analyses

Data used in parametric statistical tests met the as-
sumption of normality (Shapiro– Wilke test) and homo-
geneity of variance (Levene's test). Shapiro– Wilke tests, 
Levene's tests, Kruskall– Wallis tests, and paired- sample 
T- tests were done using Statistics Kingdom Online 
Calculators (Statistics Kingdom 2017; https://www.stats 
kingd om.com). One- way ANOVA with post hoc Tukey 
HSD analyses, and Kendall's tau rank correlation tests 
were done using the Astasa Online Statistical Calculator 
(Navendu Vasavada, 2016; https://astat sa.com).

RESU LTS

Effect of S. helianthica size on their 
susceptibility to capture by A. proteus

Only some of the S. helianthica that swam into the CZ of 
an A. proteus (100 μm from the predator's surface) were 
captured. We found that the percent of the prey in the CZ 
that were caught by A. proteus correlated with the size 
(number of cells) of the choanoflagellate prey (Figure 2). 
Therefore, the hypothesis that the larger size of multi-
cellular choanoflagellates makes them less vulnerable to 
predation was rejected for the amoeboid raptorial preda-
tor, A. proteus. To determine the mechanism(s) respon-
sible for the greater susceptibility of large S. helianthica 
than of small ones to capture by A. proteus, we measured 
various aspects of the behavior of both the predators and 
the prey.

An example of the kinematics of the pseudopodia 
of A. proteus during the capture of S. helianthica prey 
is shown in Figure 3. Pseudopodia formed in response 
to choanoflagellates before the prey touched the surface 
of the predators. However, not all of the prey in the CZ 
stimulated the formation of pseudopodia by the preda-
tor. Furthermore, an A. proteus pursuing one prey some-
times responded to another prey in the CZ. When an A. 
proteus did respond to a choanoflagellate, a second pseu-
dopodium often formed after the first pseudopodium 
was initiated, and sometimes a third pseudopodium 
developed after that. The speed of the tip of an extend-
ing pseudopodium was not steady. Rather, a pseudopo-
dium showed pulses of extension every few seconds. The 
pseudopodia extended toward the prey, and eventually 
encircled the prey (Figure  3), forming a food vacuole 
containing the prey when the tips of the pseudopodia 
fused (Figure  1C). Therefore, we examined aspects of 
predator behavior that might have contributed to their 
size- selective feeding: the distance of prey when pseu-
dopodium formation was initiated, the percent of prey 
ignored by predators already in pursuit of other prey, the 
speed of pseudopodium extension, the number of pseu-
dopodia formed and the time intervals between their ini-
tiation, and the loss of prey that were being pursued.

Examples of the trajectories of swimming S. heli-
anthica and the velocity vectors of the water they dis-
turbed as they swam are shown in Figure 4. There was 
no significant difference between the swimming speeds 
of unicellular (mean = 9.8 μm/s, SD = 4.9, n = 31 single 
cells) versus colonial S. helianthica (mean = 12.9 μm/s, 
SD = 5.4, n = 16 colonies; One- way ANOVA with post-
hoc Tukey HSD test, p > 0.05, F  =  10.23,56). However, 
when multicellular colonies of S. helianthica swam, they 
produced faster flow in the water around them than did 
unicellular S. helianthica, and the disturbances in the 
water covered greater distances (Figure 4). This obser-
vation suggests that A. proteus might be more likely to 
perceive and respond to large choanoflagellate colonies 
than to single cells or small colonies. We also examined 
whether S. helianthica executed escape maneuvers in 
response to being pursued by pseudopodia, either by 
changing their swimming speed or the straightness of 
their trajectories.

Responses by A. proteus predators to 
S. helianthica prey

Distance of prey when predator responded

Large multicellular colonies of S. helianthica were far-
ther away from the surfaces of A. proteus when they 
stimulated the formation of pseudopodia by the preda-
tors than were small colonies or unicellular choanoflag-
ellates (Figure 5).

F I G U R E  2  Percent of choanoflagellates within 100 μm of the 
surface of an Ameoba proteus that were captured by the A. proteus 
(means ± SD). There was a significant positive correlation between 
the percent of choanoflagellates captured by A. proteus and the 
number of cells in a choanoflagellate (one- sided Kendall's tau rank 
correlation test, p = 0.017, τ = 0.130, data for 22 A. proteus and 171 
Salpingoeca helianthica).
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Prey ignored by predators while capturing 
other prey

We tallied whether or not pseudopodia formed in re-
sponse to choanoflagellates within 100 μm of A. pro-
teus. Very few prey (“first prey”) that entered the CZ 
of A. proteus that were not already pursuing other prey 
were ignored (mean % ignored = 12%, SD = 25, n = 64 

A. proteus). However, if A. proteus were already pursu-
ing prey, then subsequent S. helianthica entering the 
CZ (“second prey”) were more likely to be ignored. The 
percent of second prey ignored was significantly higher 
than the percent of first prey ignored for unicellular S. 
helianthica (one- sided Mann– Whitney U test, p = 0.002, 
W = 48, n = 15 A. proteus encountering first prey and 16 
A. proteus encountering second prey), for small colonies 

F I G U R E  3  Example of the kinematics of pseudopodia of Amoeba proteus. The speeds of three pseudopodia are plotted as a function of 
time (frame number, and seconds from the start of the video). Frames of the video at different times during the process are shown above the 
graph, and gray vertical lines on the graph indicate when those frames were taken. The colored trajectories on the video frames indicate the 
paths of the tips of each pseudopodium (aqua shows pseudopodium #1, red shows pseudopodium #2, and green shows pseudopodium #3). 
The “+” on a trajectory shows the position along the trajectory of the tip of the pseudopodium in that frame of the video. Each pseudopodium 
undergoes pulses of rapid extension at roughly 10– 30 s intervals.

F I G U R E  4  Examples of trajectories of water disturbances produced by swimming Salpingoeca helianthica of different sizes (single cell, 
small colony of three cells, and large colony of 10 cells). The position of the S. helianthica at 0.2 s intervals is shown by circles (shade of gray 
indicates time since the start of the tracking; scale shown on left). The frame of the video shown is the last frame of the 14 s trajectory. Velocity 
vectors of water motion produced by the choanoflagellates as they swam are shown in the water (color scale shown on right). To indicate the 
distances at which the choanoflagellates disturbed the water, only velocities ≥10 μm/s are shown.
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FORMATION OF MULTICELLULAR COLONIES BY CHOANOFLAGELLATES INCREASES 
SUSCEPTIBILITY TO CAPTURE BY AMOEBOID PREDATORS

(p = 0.00004, W = 62, n = 21 A. proteus encountering first 
prey and 19 A. proteus encountering second prey), and 
for large colonies (p = 0.000007, W = 145, n = 28 A. pro-
teus encountering first prey and 28 A. proteus encoun-
tering second prey). The larger the choanoflagellate, the 
less likely it was to be ignored by A. proteus that already 
were extending pseudopodia in response to other prey 
(Figure 6).

Extension speed of pseudopodia

There was no correlation between the size of the S. he-
lianthica prey and the mean extension speed (Figure 7A) 

or the peak extension speed (Figure 7B) of the pseudo-
podia of A. proteus responding to the choanoflagellates.

Number and timing of pseudopodia

There was no correlation between the size of the S. heli-
anthica and the number of pseudopodia of A. proteus that 
formed in response to the choanoflagellates (Figure 8). 
There also was no correlation between the size of the S. 
helianthica and the time between the initiation of the first 
and second pseudopodia of A. proteus (Figure 9A), or be-
tween the initiation of the second and third pseudopodia 
(Figure 9B).

Loss of prey being pursued

There was no correlation between the size of the S. he-
lianthica being pursued by pseudopodia and the percent 

F I G U R E  5  Distance of Salpingoeca helianthica prey from the 
surface of an Amoeba proteus when the first pseudopodium of the A. 
proteus started to form. There was a significant positive correlation 
between the distance of a choanoflagellate from an A. proteus when 
its first pseudopodium responded and the number of cells in the 
choanoflagellate (one- sided Kendall's tau rank correlation test, 
p = 0.017297, τ = 0.246595, n = 40 choanoflagellates).

F I G U R E  6  Percent of Salpingoeca helianthica within 100 μm of 
the surface of an Amoeba proteus that are ignored by the A. proteus 
(i.e. that do not induce the formation of a pseudopodium) when the 
A. proteus was not responding to other prey (gray bars) and when the 
A. proteus was already responding to another S. helianthica (black 
bars). Prey were pooled into three size categories (single cells, small 
colonies of 2– 5 cells, and large colonies of ≥6 cells) so that each size 
category had a large number of events. If the A. proteus were already 
pursuing other prey, there was a significant negative correlation 
between the percent of choanoflagellates ignored and the size of the 
choanoflagellates (one- sided Kendall's tau rank correlation test, 
p = 0.017, τ = −0.226, n = 63 A. proteus).

F I G U R E  7  Extension speeds of pseudopodia of Amoeba proteus 
in response to Salpingoeca helianthica of different sizes (cell number). 
(A) Mean pseudopodium extension speed plotted as a function 
of choanoflagellate size (number of cells). There was no positive 
correlation between mean pseudopodium extension speed and the 
number of cells in a choanoflagellate (one- sided Kendall's tau rank 
correlation test, p = 0.3623, τ = 0.032, n = 61 pseudopodia). (B) Mean 
of the peak speeds of all the pulses of extension of a pseudopodium 
plotted as a function of choanoflagellate size (number of cells). There 
was no positive correlation between peak pseudopodium extension 
speed and the number of cells in a choanoflagellate (one- sided 
Kendall's tau rank correlation test, p = 0.812, τ = −0.081, n = 61 
pseudopodia).
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of those prey lost by the predator (two- sided Kendall's 
tau rank correlation test, p = 0.628, τ = −0.039, n = 102 
choanoflagellates).

Responses of S. helianthica to A. proteus

Some videos showed S. helianthica colonies swimming 
both before the predator reacted to them, and then after 
the first pseudopodium began to extend toward them be-
fore the colonies were encircled by pseudopodia. In those 
cases, we could determine whether or not S. helianthica 
changed their swimming in response to extending pseu-
dopodia that were not yet restricting the choanoflagel-
late motion. The swimming speeds of S. helianthica 
colonies before A. proteus responded to them were not 
significantly different from the swimming speeds of 
those colonies when pseudopodia were extending toward 
them but had not yet started to encircle them (one- way 
ANOVA, p = 0.448, F = 0.6221,10). Similarly, the straight-
ness indices of the trajectories of the colonies did not 
change when pseudopodia began to extend toward them 
(two- sided Mann– Whitney U test, p = 0.11, W = 23, n = 10 
colonies). Thus, it appears that S. helianthicus colonies 
do not have an escape response to approaching pseudo-
podia. Unfortunately, because unicellular S. helianthica 
were closer to the predator than colonies when pseudo-
podia began to extend, there were no trajectories during 
pseudopodium extension toward single cells that were 
long enough to determine their swimming speeds or 
straightness indices before they were encircled.

When swimming freely, unicellular and multicellular 
S. helianthica swam at similar speeds, but the trajectories 

of single cells were straighter than those of colonies 
(Figure 10). However, when their motion was constrained 
after they were encircled by pseudopodia, both single 
cells and colonies swam more slowly and their paths be-
came less straight (Figure 10).

DISCUSSION

Multicellularity increased susceptibility to 
predation by a raptorial ameboid predator

We found that multicellular choanoflagellates, S. he-
lianthica, were more susceptible than unicellular cho-
anoflagellates to capture by the raptorial predator, A. 
proteus. This result runs counter to the idea that forming 

F I G U R E  8  Number of pseudopodia of Amoeba proteus that 
are formed in response to Salpingoeca helianthica of different 
sizes (number of cells). Each point represents the mean for an 
individual A. proteus of the number of pseudopodia responding 
to choanoflagellates of a specific size. Numbers above the circles 
indicate the number of data points superimposed at that value. There 
was no positive correlation between the number of pseudopodia 
responding to a choanoflagellate and the number of cells in the 
choanoflagellate (one- sided Kendall's tau rank correlation test, 
p = 0.134, τ = 0.112, n = 108).

F I G U R E  9  Time between initiation of the first pseudopodium 
and the second pseudopodium (A), and between initiation of the 
second pseudopodium and the third pseudopodium (B) of Amoeba 
proteus in response to Salpingoeca helianthica prey of different 
sizes (cell numbers). There was no positive correlation of the time 
between the initiation of the first and second pseudopodia with the 
number of cells in the choanoflagellate (two- sided Kendall's tau rank 
correlation test, p = 0.359, τ = 0.157, n = 20 A. proteus), or of the time 
between the initiation of the second and third pseudopodia with the 
number of cells in the choanoflagellate (two- sided Kendall's tau rank 
correlation test, p = 0.458, τ = 0.203, n = 10 A. proteus).
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FORMATION OF MULTICELLULAR COLONIES BY CHOANOFLAGELLATES INCREASES 
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multicellular colonies enabled the ancestors of cho-
anoflagellates and animals to escape in size from pre-
dation by microbial predators (e.g. Boraas et al.,  1998; 
Fenchel,  2019; Richter & King,  2013; Stanley,  1973). 
The observation that the passive heliozoan predator, 
Actinosphaerium nucleofilum, consumed unicellular and 
multicellular S. helianthica at the same rate (Koehl, 2020; 
Kumler et al., 2020) also is inconsistent with the hypoth-
esis that the selective advantage of multicellularity in the 
ancestors of animals was reduced susceptibility to pre-
dation. In contrast, large colonies of S. helianthica were 
rejected by the suspension- feeding ciliate, Stentor coer-
uleus, while small colonies and unicellular choanoflagel-
lates were readily engulfed (Koehl, 2020; Weiler, 2015). 
Therefore, there appears to be a tradeoff between avoid-
ance of capture by raptorial predators (single cells are 
less susceptible) versus by suspension- feeding predators 
(colonies are less susceptible).

Possible selective advantages of forming 
multicellular colonies

There may have been multiple factors that favored the 
formation of multicellular colonies in the ancestors of 
choanoflagellates and animals (Brunet & King,  2017; 
Fenchel, 2019; Koehl, 2020). Although it has long been 
thought that predation was an important selective pres-
sure leading to the evolution of multicellularity in ani-
mal ancestors, it has also been suggested that colonial 
ancestors were able to produce stronger feeding cur-
rents and capture more particulate food per time than 
could single cells (e.g. Cavalier- Smith, 2017; Koehl, 2020; 
Koschwanez et al., 2011; Short et al., 2006; Stanley, 1973). 

Fenchel (1986) showed that protozoan suspension feed-
ing is more effective if the organisms do not translate 
through the water, either because they are attached to 
solid surfaces or because they form suspended colonies 
that swim very slowly through the water as they draw in 
water from different directions. However, mathematical 
hydrodynamic models of the feeding currents produced 
by unicellular versus colonial choanoflagellates yielded 
conflicting results. Roper et al.  (2013) found that the 
flux of prey- carrying water into the CZs of choanoflag-
ellate cells in chain colonies of certain configurations 
was greater than for single cells. In contrast, Kirkegaard 
and Goldstein (2016) found no enhancement of flux for 
cells in chains or in rosette colonies (balls of cells with 
their flagella pointing outward) compared with unicel-
lular choanoflagellates. Experiments showed no effect 
of multicellularity on feeding rates for choanoflagel-
lates that form hemispherical colonies attached to the 
substratum by a stalk (Fenchel,  2019), whereas other 
studies revealed that freely swimming rosette colonies 
captured more bacteria per cell per time than did unicel-
lular swimmers or unicellular thecate choanoflagellates 
attached to surfaces (Kreft,  2010; L'Etoile & King- 
Smith, 2020). Measurements of choanoflagellate swim-
ming showed that rosette colonies traveled more slowly 
than did unicellular choanoflagellates (Kirkegaard 
et al., 2016; Koehl, 2020), but water velocities measured 
relative to the collars of unicellular swimmers and of 
cells in rosette colonies showed that some of the cells 
in colonies encountered much greater water flux than 
did the single cells (Koehl, 2020). These studies suggest 
that there may be a trade- off between swimming versus 
feeding performance, and they show that the geometry 
of colonies determines whether or not cells in colonies 

F I G U R E  10  Swimming of Salpingoeca helianthica. (A) Swimming speed of single cells (triangles) and colonies (circles) when not encircled 
by pseudopodia of Amoeba proteus (open symbols) and when being encircled by pseudopodia of A. proteus (black symbols). Unicellular 
choanoflagellates swam significantly more slowly when being encircled by pseudopodia than when not being encircled by pseudopodia 
(p = 0.036), as did colonies (p = 0.001), but the swimming speeds of single cells and colonies were not significantly different from each other, 
both when swimming freely (p = 0.141) and when being encircled by pseudopodia (p = 0.900; one- way ANOVA with posthoc Tukey HSD test, 
F = 10.233,56). (B) Straightness index of the trajectories of S. helianthica when not encircled by pseudopodia of A. proteus (white bars) and when 
being encircled by pseudopodia of A. proteus (gray bars). The straightness indices of unicellular choanoflagellates were significantly higher 
when they swam freely than when they were being encircled by pseudopodia (p = 0.006), as were the straightness indices colonies (p = 0.003), 
but the straightness indices of single cells were significantly higher than for colonies, both when swimming freely (p = 0.01018) and when being 
encircled by pseudopodia (p = 0.00002; Kruskal– Wallis test with posthoc Dunn's test, H = 20.413,41)
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are more effective suspension feeders than unicellular 
choanoflagellates.

The distribution of bacteria and microbial eukary-
otes in aquatic environments is spatially patchy and 
varies with time (e.g. Raina et al., 2022; Stocker, 2012), 
so we suggest that animal ancestors that had the abil-
ity to switch between being unicellular or multicellular 
in response to the abundance in the water around them 
of bacterial prey, and of raptorial or suspension- feeding 
predators, might have had a selective advantage over 
purely unicellular forms. The choanoflagellate S. rosetta 
is induced to form colonies in response to certain chem-
ical cues from bacteria (Alegado et al.,  2012; Ireland 
et al., 2020), but whether choanoflagellates are induced 
to form colonies by abundant suspension- feeding preda-
tors or to be unicellular by abundant raptorial predators 
is not yet known.

Aspects of predator behavior affected by 
prey size

The distance at which S. helianthica stimulated pseu-
dopodium formation by A. proteus correlated with the 
size (number of cells) of the choanoflagellates (Figure 5). 
Furthermore, large colonies of S. helianthica were more 
likely than small colonies or single cells to induce a feed-
ing response by A. proteus that were already pursuing 
other prey (Figure 6). The flow fields produced by large 
swimming colonies of S. helianthica were bigger than 
those produced by smaller choanoflagellates (Figure 3). 
The bigger the flow field produced by a swimming or-
ganism, the greater the distance its hydrodynamic signal 
can be detected and the farther its odors are carried. A. 
proteus sense both hydrodynamic and chemical signals 
produced by prey (e.g. Kepner & Taliaferro, 1913; Prusch 
& Britton, 1987; Schaeffer, 1917; Weisman & Korn, 1967). 
Thus, our data suggest that a mechanism responsible for 
the preferential feeding on large choanoflagellates by A. 
proteus is the greater likelihood that the predators can 
sense the flow and/or odor fields produced by large mul-
ticellular colonies than by single cells and small colonies.

Other aspects of the behavior of pseudopodia did not 
vary with prey size. For example, the number of pseu-
dopodia that formed (Figure 8) and the timing between 
their formation (Figure 9) were not affected by the num-
ber of cells in S. helianthica. The percent of the prey that 
were lost by the predator during the capture process also 
did not vary with prey size. Furthermore, the number of 
cells in S. helianthica prey did not affect the kinematics 
of the extension of pseudopodia. We found that pseudo-
podium extension by A. proteus was pulsatile (Figure 3), 
with peak speeds during pulses of extension ranging 
from ~3 to 17 mm s−1 (Figure 7B), and with time- averaged 
extension speeds of ~1– 5 mm s−1 (Figure 7A). These mean 
speeds are in the same range as published crawling speeds 
of A. proteus (Cameron et al., 2007; Folger, 1925; Mast & 

Prosser, 1932; Mast & Stahler, 1937; Miyoshi et al., 2003), 
but are faster than lamellipod extension by Dictyostelium 
amoebae (Schindl et al., 1995). We found that neither the 
peak nor mean speeds of pseudopodia varied with prey 
size (Figure 7).

Behavior of unicellular and multicellular prey

There was no difference between the swimming speeds of 
unicellular versus colonial S. helainthica, (Figure 10A). 
Multicellular choanoflagellates, S. rosetta, do not beat 
their flagella in a coordinated fashion (Kirkegaard 
et al., 2016; Roper et al., 2013), and thus do not show the 
rapid swimming achieved by spherical colonies of Volvox 
spp. that are composed of cells that beat their flagella in 
a coordinated direction (reviewed in Koehl, 2020). The 
swimming speeds and straightness indices we measured 
for unicellular and colonial S. helianthica were similar 
to those reported by Kumler et al. (2020). Furthermore, 
single cells and rosette colonies of S. helianthica swam 
at the same range of velocities, respectively, as did col-
lared single cells (Mino et al., 2017; Nguyen et al., 2019) 
and rosette colonies of S. rosetta (Kirkegaard et al., 2016; 
Koehl, 2020). Rosette colonies of S. rosetta swam along 
noisy helical trajectories (Kirkegaard et al.,  2016) 
that were not as straight as the paths of single cells 
(Koehl, 2020), and colonies of S. helianthica also had less 
straight trajectories than did single cells (Figure 10B).

When encircled by pseudopodia of A. proteus, S. he-
lianthica swam more slowly than when swimming freely 
(Figure  10). The viscous resistance of water to being 
sheared determines the hydrodynamic forces experi-
enced by microscopic organisms, the layer of sheared 
water around a microscopic swimmer is large relative 
to the size of the organism, and stationary surfaces can 
slow down the motion of microswimmers that are many 
body lengths away (e.g. Vogel, 1994). Thus, the viscous 
resistance of the water to being sheared between swim-
ming choanoflagellates and nearby surfaces of pseudo-
podia is most likely the mechanism responsible for the 
reduction in the swimming speed of encircled prey. A 
similar reduction in speed has also been measured for S. 
helianthica swimming between the axopodia of heliozo-
ans (Kumler et al., 2020).

S. helianthica did not perform escape maneuvers or 
change their swimming speed in response to being pur-
sued by pseudopodia, so the size- selective feeding by A. 
proteus was due to predator behavior rather than to the 
escape performance of prey. S. helianthica also did not 
execute escape responses to passive heliozoan predators 
(Kumler et al.,  2020) or to suspension- feeding ciliates 
(Koehl, 2020; Weiler, 2015).
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